Hoşgeldiniz, Giriş Yapın veya Kayıt Olun.
In this chapter, we have reviewed the general background of volume rendering and found out what had been done in the literature. Volume rendering techniques allows us to fully reveal the internal structure of 3D data, including amorphous and semi-transparent features. It encompasses an array of techniques for displaying images directly from 3D data. Surface rendering algorithms fit geometric primitives to the data and then render, making this approach unattractive. Direct rendering methods render volumetric datasets directly without converting to any intermediate geometric representation, thus, it has become a key technology in the visualization of scientific volumetric data.
[1] Foley, J.D., Dam, A.V., Feiner S.K., and Hughes J.F. (1990). Computer Graphics: Principles and Practice. (2th ed.). Massachusetts: Addison-Wesley Publishing Company.
[2] Hearn, D., and Baker, M.P. (1997). Computer Graphics C Version. (2th ed.). New Jersey: Prentice Hall.
[3] Foley, J.D., Dam, A.V., Feiner S.K., and Hughes J.F., Phillips R.L. (1995). Introduction to Computer Graphics. Massachusetts: Addison-Wesley.
[4] Ray, H., Pfister, H., Silver, D., and Cook, T.A. (1999). Ray Casting Architectures for Volume Visualization. IEEE Transactions on Visualization and Computer Graphics, 5(3), 210-233
[5] Jones, M.W. (1996). The Production of Volume Data fram Triangular Meshes Using Voxelization. Computer Graphics Forum, 15(5), 311-318
[6] Cooke, J.M., Zyda, M.J., Pratt, D.R., and McGhee, R.B. (1992). NPSNET: Flight Simulation Dynamic Modeling Using Quaternions. Teleoperations and Virtual Environments, 1(4), 404-420
[7] Schalkoff, R.J. (1989). Digital Image Processing and Computer Vision. Singapore: John Wiley & Sons Publishing.
[8] Jürgen, H., Manner, R., Knittel, G., and Strasser, W. (1995). Three Architectures for Volume Rendering. International Journal of the Eurographics Association, 14, 111-122
[9] Dachille, F. (1997). Volume Visualization Algorithms and Architectures. Research Proficiency Exam, SUNY at Stony Brook
[10] Yagel, R. (1996). Towards Real Time Volume Rendering. Proceedings of GRAPHICON' 96, 230-241
[11] Yagel, R. (1998). Data Visualization Techniques. C. Bajaj (Ed.), John Wiley & Sons. Efficient Techniques for Volume Rendering of Scalar Fields.
[12] Ma, K.L., and Crockett, T.W. (1997). A Scalable Parallel Cell-Projection Volume Rendering Algorithm for Three-Dimensional Unstructured Data. IEEE Parallel Rendering Symposium, 95-104
[13] Kaufman, A.E. (1997). Volume Visualization: Principles and Advances. SIGGRAPH '97, 23-35
[14] Kaufman, A.E. (1994). Voxels as a Computational Representation of Geometry. in The Computational Representation of Geometry SIGGRAPH '94 Course Notes
[15] Press, W.H., Teulkolsky, S.A., Vetterling, W.T., Flannery, B.P. (1997). Numerical Recipes in C. (2th ed.). Cambridge: Cambridge University Press.
[16] Elvins, T.T. (1992). A Survey of Algorithms for Volume Visualization. Computer Graphics, 26 (3), 194-201
[17] Günther, T., Poliwoda, C., Reinhart, C., Hesser, J., and Manner, J. (1994). VIRIM: A Massively Parallel Processor for Real-Time Volume Visualization in Medicine. Proceedings of the 9th Eurographics Hardware Workshop, 103-108
[18] Boer, M.De, Gröpl, A., Hesser, J., and Manner, R. (1996). Latency-and Hazard-free Volume Memory Architecture for Direct Volume Rendering. Eurographics Workshop on Graphics Hardware, 109-119
[19] Swan, J.E. (1997). Object Order Rendering of Discrete Objects. PhD. Thesis, Department of Computer and Information Science, The Ohio State University
[20] Yagel, R. (1996). Classification and Survey of Algorithms for Volume Viewing. SIGGRAPH tutorial notes (course no. 34)
[21] Law,A. (1996). Exploiting Coherency in Parallel Algorithms for Volume Rendering. PhD. Thesis, Department of Computer and Information Science, The Ohio State University
[22] Lacroute, P., and Levoy, M. (1994). Fast Volume Rendering Using a Shear-Warp Factorization of the Viewing Transform. Computer Graphics Proceedings Annual Conference Series ACM SIGGRAPH, 451-458.
[23] Bloomenthal, J. (1997) Introduction to Implicit Surfaces. In J. Bloomenthal (Ed.), Surface Tiling.
[24] Balendran, B. (1999). A Direct Smoothıng Method For Surface Meshes. Proceedings of 8th International Meshing Roundtable, 189-193
[25] Bloomenthal, J. (1988). Polygonization of Implicit Surfaces. Computer Aided Geometric Design, 5(00), 341-355
[26] Jondrow, M. (2000). A Survey of Animation Related Implicit Surface Papers. Computer Graphics Course Notes, The University of George Washington
[27] Lin, K. (1997). Surface and 3D Triangular Meshes from Planar Cross Sections. PhD Thesis, Purdue University
[28] Azevedo, E.F.D. (1999). On Adaptive Mesh Generation in Two-Dimensions. Proceedings, 8th International Meshing Roundtable, 109-117
[29] Miller, J.V. (1990). Geometrically Deformed Models for the Extraction of Closed Shapes from Volume Data. PhMs. Thesis, Rensselaer Polytechnic Institute
[30] Gross, M.H., Gatti, R., and Staadt, O. (1995). Fast Multiresolution Surface Meshing. Proceedings of IEEE Visualization '95, 135-142
[31] Borouchaki, H., Hecht, F., Saltel, E., and George, P.L. (1995). Reasonably Efficient Delaunay-based Mesh Generator in 3 Dimensions. Proceedings of 4th International Meshing Roundtable, 3-14
[32] Herman, G.T., and Liu, H.K. (1979). Optimal Surface Reconstruction from Planar Contours. Computer Graphics and Image Processing, 1-121
[33] Roberts, J.C. (1993). An Overview of Rendering from Volume Data including Surface and Volume Rendering. Technical Report 13-93*, University of Kent, Computing Laboratory, Canterbury, UK
[34] Lorenson, W.E., and Cline, H.E. (1987). Marching Cubes: A High Resolution 3D Surface Construction Algorithm. Computer Graphics, 21(4), 163-169
[35] Montani, C., Scateni, R., and Scopigno, R. (1994). Discretized Marching Cubes. Visualization '94 Proceedings, 281-287
[36] Smemoe, C.M. (2000). Volume Visualization and Recent Research in the Marching Cubes Approach. Cource Notes of School of Engineering, Cardiff University, UK
[37] Cline, H.E., Lorensen, W.E., Ludke, S., Crawford, C.R., and Teeter, B.C.(1988). Two Algorithms for the Three-Dimensional Reconstruction of Tomograms. Medical Physics, 15(3), 320-327
[38] Cignoni, P., Montani, C., Puppo, E., and Scopigno, R. (1996). Optimal Isosurface Extraction from Irregular Volume Data. Proceedings of Volume Visualization Symposium, 31-38
[39] Cignoni, P., Montani, C., and Scopigno, R. (1998). Mathematical Visualization. In Hege, H.C. and Polthier, K. (Eds.), Tetrahedra Based Volume Visualization, 3-18
[40] Treece, G.M., Prager, R.W., and Gee, A.H. (1998). Regularised Marching Tetrahedra: Improved Iso-Surface Extraction., Computers and Graphics, 104-110.
[41] Staadt, G. O., and Gross, M.H. (1998). Progressive Tetrahedralizations. Proceedings of IEEE Visualization '98,397-402
[42] Totsuka, T., and Levoy, M. (1993). Frequency Domain Volume Rendering. Computer Graphics Proceedings, Annual Conference Series, 271-278.
[43] Oppenheim, A.V., and Schafer, R.W. (1975) Digital Signal Processing. London: Prentice Hall International Inc.
[44] Lim, J.S. (1990). Two Dimensional Signal and Image Processing. London: Prentice Hall International Inc.
[45] Levoy, M. (1992). Volume Rendering Using Fourier Slice Theorem. IEEE Computer Graphics and Applications, 3, 202-212
[46] Dunne, S., Napel, S., and Rutt, B. (1990). Fast Reprojection of Volume Data. Proc. First Conference on Visualization in Biomedical Computing, IEEE Computer Society Press, 11-18
[47] Malzbender, T. (1993). Fourier Volume Rendering. ACM Transactions on Graphics, 12(3), 233-250
[48] Yang, C. (2000). Integration of Volume Visualization and Compression: A Survey. The Visual Computer, 11(6), 225-242
[49] Baharov, Z., Krupnik, H., Malah, D., and Karnin, E. (1996). Fractal Image Encoding and Analysis. In Y. Fisher (Ed.), A Multi-resolution Framework for Fractal Image Representation and its Applications.
[50] Fisher, Y. (1992). Fractal Image Compression : SIGGRAPH’92 Course Notes
[51] Fisher, Y., Rogovin, D., and Shen, T.P. (1994). A Comparison of Fractal Methods with DCT and Wavelets. Neural and Stochastic Methods in Image and Signal Processing III volume Proc. SPIE ,23, 04-16
[52] Gray, R.M. (1984, April). Vector Quantization. IEEE ASSP Magazine, 14-29
[53] Chiueh, T., Yang, C., and He, T. (1997). Integrated Volume Compression and Visualization. Proceedings of Visualization '97, 329-336
[54] Gross, M.H., Lippert, L., Dittrich, R., and Haring, S. (1997). Two Methods for Wavelet-Based Volume Rendering. Computers and Graphics, 21(2), 237-252
[55] Muraki, S. (1993). Volume Data and Wavelet Transform. IEEE Computer Graphics & Applications, 13(4), 50-56
[56] Gross, M., Lippert, L., Dreger, A., and Koch., R. (1995). A New Method to Approximate the Volume Rendering Equation Using Wavelets and Piecewise Polynomials. In Computers and Graphics, 19(1), 120-128
[57] Westermann, R. (1994). A Multiresolution Framework for Volume Rendering. 1994 Symposium on Volume Visualization, 51-58
[58] Sutherland, I.E., Sproull, R.F., and Schumaker, R.A. (1974) A Characterization of Ten Hidden Surface Algorithms. ACM Computing Surveys, 6(1), 1-55
[59] Frieder, G., Gordon, D., and Reynolds, R.A. (1985). Back-to-Front Display of Voxel-Based Objects. IEEE Computer Graphics and Applications, 5(1), 52-60
[60] Westover, A.L. (1990). Footprint Evaluation for Volume Rendering. Computer Graphics (Proceeding of SIGGRAPH), 24(4)
[61] Westover, A.L. (1991). Splatting: A Parallel Feed-Forward Volume Rendering Algorithm. Ph.D. Dissertation, Department of Computer Science, The University of North Carolina at Chapel Hill
[62] Zwicker, M., Pfister., H., Baar, J.B. and Gross M. (2001). Surface Splatting. In Computer Graphics SIGGRAPH 2001 Proceedings, 371-378
[63] Nulkar, M., and Mueller, K. (2001). Splatting With Shadows. International Workshop on Volume Graphics 2001, 35-50
[64] Pfister, H. (1997). Architectures for Real-Time Volume Rendering, PhD. Thesis State University of NewYork
[65] H. K. Tuy, L T. Tuy, ‘‘Direct 2-D Display of 3-D Objects’’, IEEE Computer Graphics &Applications, 4, 10 November 1984), 29-33.
[66] Kaufman, A., and Shimony, E., (1986). 3D Scan-Conversion Algorithms for Voxel-Based Graphics. Proc. ACM Workshop on Interactive 3D Graphics, 45-76.
[67] Kaufman, A., (1987). An Algorithm for 3D Scan-Conversion of Polygons. Proc. EUROGRAPHICS’87, 197-208
[68] Yagel, R., Cohen, D., and Kaufman, A. (1992). Discrete Ray Tracing. IEEE Computer Graphics &Applications, 12(5), 19-28.
[69] Levoy, M. (1988). Display of Surfaces from Volume Data. Computer Graphics and Applications, 8(5), 29-37.
[70] Upson, C., and Keeler, M. (1988). V-BUFFER: Visible Volume Rendering. Computer Graphics ACM Siggraph'88 Conference Proceedings, 22(4), 59-64
[71] Yagel, R., and Machiraju, R. (1995). Data-Parallel Volume Rendering Algorithms. The Visual Computer, 11(6), 319-338
[72] Osborne, R., Pfister, H., Lauer, H., McKenzie, N., Gibson, S., Hiatt, W., and Ohkami, T. (1997). EM-Cube: An Architecture for Low-Cost Real-Time Volume Rendering. Proc. Eurographics/SIGGRAPH Workshop on Graphics Hardware, 131-138
[73] Levoy, M. (1990). Efficient Ray Tracing of Volume Data. ACM Transactions on Graphics, 9(3), 245-261
[74] Koning, A.H.J. (1996). Parallel Volume Visualization. Ph.D. Thesis University of Utrecht, October
[75] Crockett, T.W. (1997). Parallel Rendering. IEEE Parallel Rendering Symposium, 23(7), 819-843
[76] Machiraju, R., and Yagel, R. (1995). Data Parallel Volume Rendering Algorithms. The Visual Computer, 11, 319-338
[77] Machiraju, R., and Yagel, R. (1993). Efficient Feed-Forward Volume Rendering Techniques for Vector and Parallel Processors. Proceedings Supercomputing ‘93, 699-708
[78] Levoy, M. (1990). Volume Rendering by Adaptive Refinement. The Visual Computer, 6(1), 2-7
[79] Danskin, J., and Hanharan, P. (1992). Fast Algorithms for Volume Ray Tracing. Proceedings of 1992 Workshop on Volume Visualization, 91-105.
[80] Yagel, R., and Shi, Z. (1993). Accelerating Volume Animation by Space-Leaping. Proceedings of Visualization’ 93, 62-69
[81] Demers, J., Yoon, I., Kim, T., and Neumann, U. (1998). AcceleratingRay Tracing by Exploiting Frame-to-Frame Coherence. USC Technical report No. 98-668
[82] Ahrens, J., Law, C., Schroeder, W., Martin, K., and Papka, M. (2000) A Parallel Approach for Efficiently Visualizing Extremely Large, Time-Varying Datasets. Technical Report LAUR-001630, Los Alamos National Laboratory
[83] Schroeder, P., and Salem, J.B. (1991). Fast Rotation of Volume Data on Data Parallel Architecture. Proceedings of Visualization’91, 50-57
[84] Neih, J., and Levoy, M. (1992). Volume Rendering on Scalable Shared Memory Architecture. Proceedings of 1992 Workshop on Volume Visualization, 17-24
[85] Montani, C., Perego, R., and Scopingo, R. (1992). Parallel Volume Visualization on a Hypercube Architecture. Proceedings of 1992 Workshop on Volume Visualization, 9-16
[86] Fruhauff, T. (1992). Volume Rendering on a Multiprocessor Architecture with Shared Memory: A Concurrent Volume Rendering Algorithm. Proceedings of the Third Eurographics Workshop on Scientific Visualization, 21
[87] Corrie, B., and Mackerras, P. (1992). Parallel Volume Rendering and Data Coherence on the Fujitsu AP100. Technical Report TRCS-92-11, Department of Computer Science, Australian National University, Canberra, ACT, Australia
[88] Law, A., Yagel, R., and Jayasimha, D.N. (1995). VoxelFlow: A Parallel Volume Rendering Method for Scientific Visualization. ", Proceedings of International Conference on Computer Applications in Engineering and Medicine, 260-264
[89] Law, A., and Yagel, R. (1995). CellFlow: A Parallel Rendering Scheme for Distributed Memory Architectures. Proceedings of International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA `95), 1-10.
[90] Wittenbrink, C.M., and Somani, A.K. (1993). 2D and 3D Optimal Image Warping. Proceedings of Seventh International Parallel Processing Symposium, 197-208
[91] Law, A., and Yagel, R. (1996). Multi-Frame Thrashless Ray Casting with Advancing Ray-Front. Graphics Interface `96, 71-77
[92] Laur, D., and Hanrahan, P. (1991). Hierarchical Splatting: A Progressive Refinement Algorithm for Volume Rendering. Computer Graphics, 25(4), 285-288
[93] Yagel, R., Ebert, D.S., Scott, J. and Kurzion Y. (1995). Grouping Volume Renderers for Enhanced Visualization in Computational Fluid Dynamics. IEEE Transactions on Visualization and Computer Graphics, 1(2), 117-132
[94] Knittel, G. (1993). VERVE-Voxel Engine for Real-Time Visualization and Examination. Eurographics ‘93, 12(3), 37- 48
[95] Meinzer, H., Meetz, K., Sheppelmann, D., Engelmann, U., and Baur, H. J. (1991). The Heidelberg Ray Tracing Model. IEEE Computer Graphics and Applications, 11(6), 34-43
[96] Bakalash, R., Bakalash, R., Pfister, H., Kaufmann, A., and Pacheco, R. (1992). Cube-2: An Extended Volume Visualization System for Arbitrary Parallel Projection. In Proceedings of the 1992 Eurographics Workshop on Graphics Hardware Cambridge UK.
[97] Pfister, H., Kaufman, A., and Chiueh, T. (1994). Cube-3: A Real-Time Architecture for High-Resolution Volume Visualization. 1994 Workshop on Volume Visualization , 75-83
[98] Pfister, H., and Kaufman, A. (1995). Pfister, H., and Kaufman, A. (1995). Cube-4 : A scalable Architecture for Real-Time Volume Rendering. Technical Report TR-950115, Computer Science Department, SUNY at Stony Brook
[99]> Kanus, U., Meissner, M., Strasser, W., Pfister, H., Kaufmann, A., Amerson, R., Carter, R.J., Culbertson, B., Kuekes, P., and Snider, G. (1997). Implementations of Cube-4 on the TERAMAC Custom Computing Machine. Computer and Graphics, 21(2), 199-208
[100] Pfister, H., Hardenberg, J., Knittel, J., Lauer, H., and Seiler, L. (1999). The VolumePro Real-Time Ray-Casting System. SIGGRAPH 1999 Conference Proceedings, 251-260
[101] Dachille, F. (1995). Architectures for Realistic Volume Rendering. IEEE Computer Graphics and Applications, 11(5), 56-75
[102] Yagel, R., and Kaufman, A. (1992). Template-Based Volume Viewing. Computer Graphics Forum, 11(3), 153-157
[103] Yagel, R., and Ciula, K. (1993). High Quality Template-Based Volume Rendering. Ohio State University Technical Report, OSU-CISRC-10/93-TR35, 1993.
[104] Neubauer, A., Mroz, L., Hauser, H., and Wegenkittl, R. (2002). Cell-Based First-Hit Ray Casting. Proceedings of the 4th Joint IEEE TCVG - E UROGRAPHICS Symposium on Visualization (VisSym 2002),77-86
[105] Vijayakumar, S., and Schaal, S. (2000). Locally Weighted Projection Regression: An O(n) Algorithm for Incremental Real Time Learning in High Dimensional Space. Proc. of Seventeenth International Conference on Machine Learning (ICML2000), 1079-1086
[106] Heidrich, W., McCool, M., and Stevens, J. (1995). Interactive Maximum Projection Volume Rendering. In Proceedings Visualization '95, 11-18
[107] Mroz, L., Löffelmann, H., and Gröller, E. (). Advanced High-Quality Maximum Intensity Projection for Volume Visualization. Technical Report TR-186-2-99-10 Vienna University of Technology, Institute of Computer Graphics.
[108] Gross, A. and Latecki, L. J. (1997). A Realistic Digitization Model of Straight Lines. Computer Vision and Image Understanding 67, 131-142
[109] Dorst, L., and Smeulders, A.W.M. (). Discrete Straight Line Segments: Parameters, Primitives, and Properties.
[110] Delfosse, J., Hewitt, W.T., and Mériaux, M. (1994). An investigation of Discrete Ray-Tracing. In 4th Discrete Geometry in Computer Imagery Conference, 65-76
[111] Amanatides, J. and Woo, A. (1987). A Fast Voxel Traversal Algorithm for Ray Tracing, Eurographics'87 Conference Proceedings, 3-10
[112] Cocorjolly, D., Debled-Renneson, I., and Teytand, O., (2000). Segmentation and Length Estimation of 3D Discrete Curves. Digital and Image Geometry, Advanced Lectures, Lecture Notes in Computer Science, 2243, 299-317,
[113] Cohen, D., and Kaufman, A. (1990). Scan-Conversion Algorithms for Linear and Quadratic Objects. Volume Visualization IEEE Computer Society Press, 280-301 >
[114] Cohen, D., and Kaufman, A. (1997). 3D Line Voxelization and Connectivity Control. IEEE Computer Graphics and Applications, 80-87
[115] Jonas, A., and Kiryati, N. (1997). Digital Representation Schemes for 3D Curves. Pattern Recognition, 30(11), 1803-1816
[116] Figueiredo, O., and Reveill`es, J. (1995). A Contribution to 3D Digital Lines. Proceedings of the 5th Discrete Geometry and Computer Imagery Conference, 187-198
[117] Vialard, A. (1996). Geometrical Parameters Extraction from Discrete Paths. Discrete Geometry for Computer Imagery, Lecture Notes in Comput. Sci., 1176, 24-35
[118] Kaufman, A., Cohen, D., and Yagel, R. (1993). Volume Graphics. Computer, 26(7), 51-64
[119] Bresenham, E. J. (1965). Algorithm for Computer Control of a Digital Plotter. IBM Systems Journal, 4(1), 25-30
[120] Newman, W.M., and Sproull, R.F. (1979). Principles of Interactive Computer Graphics, New York: McGraw-Hill Book Company
[121] Pitteway, M.L.V. (1967). Algorithm for Drawing Ellipses or Hyperbolae with a Digital Plotter, Computer Journal., 10(3), 282-289
[122] Phong, B. (1975). Illumination for Computer Generated Images, CACM, 18(6), 311-317
[123] Angel, E. (1989). Computer Graphics. New Mexico: Addison-Wesley Publishing Company.
[124] Rogers, D.F. (1985). Procedural Elements for Computer Graphics. New York: McGraw-Hill Book Company.
[125] Brad, M.A. (1994). User Interface Software Tools. ACM Transactions on Computer-Human Interaction 1994, August CMU-CS-94-182, Human-Computer Interaction Institute Technical Report CMU-HCII-94-107.
[126] Brad, M.A. and Rosson, M.B. (1992). Survey on User Interface Programming. Technical. Report CMU-CS-92-113, Carnegie-Mellon, School of Comp. Sci., February.
[127] Yagel, R., Cohen, D., and Kaufman, A. (1992). Normal Estimation in 3D Discrete Space. The Visual Computer, 8, 278-291.
[128] Möller, T., Machiraju, R., Mueller, K., and Yagel, R. (1997). A Comparison of Normal Estimation Schemes. In IEEE Visualization Proceedings’97, 19-26
[129] Neumann, L., Csebfalvi, O., König, A., and Gröller, E. (2000). Gradient Estimation in Volume Data Using 4D Linear Regression. Report TR-186-2-00-03, Institute of Computer Graphics, Vienna University of Technology.
[130] Bentum, M. (1996). Interactive Visualization of Volume Data. Ph.Ms.Thesis, University of Twente, Netherlands, June.
[131] Herman, G.T. and Udupa, J.K. (1981). Display of Three Dimensional Discrete Surfaces. Proceedings SPIE, 283, 90-97.
[132] Vannier, M.W., Marsh, J.L.,and Warren, J.O. (1983). Three-Dimensional Computer Graphics for Craniofacial Surgical Planning and Evaluation. Computer Graphics, 17(3), 263-273
[133] Schlusselberg, D.S., Smith, K., and Woodward, D.J. (1986). Three-Dimensional Display of Medical Image Volumes. Proceedings of NCGA’86 Conference, 3, 114-123
[134] Bryant, J., and Krumvieda, C. (1989). Display of Discrete 3D Binary Objects: I-Shading, Computers and Graphics, 13(4), 441-444
[135] Zucker, S.W., and Hummel, R.A. (1981). A Three-Dimensional Edge Operator. IEEE Transactions on Pattern Analysis and Machine Intelligence, 3(3), 324–331
[136] Webber, R.E. (1990). Ray Tracing Voxel Based Data via Biquadratic Local Surface Interpolation. The Visual Computer, 6(1), 8-15
[137] Chen, L., Herman, G.T., Reynolds, R.A., and Udupa, J.K. (1985). Surface Shading in the Cuberille Environment, IEEE Computer Graphics and Applications, 5(12) 33-43
[138] Horn, B.K.P. (1982). Hill Shading and the Reflection Map. Geo-Processing, 2, 65-146.
[139] Gordon, D., and Reynolds, R.A. (1985). Image Space Shading of Three Dimensional Objects. Computer Graphics and Image Processing, 29(3), 361-376
[140] Cohen, D., Kaufman, A., Bakalash, R., and Bergman, S. (1990). Real-Time Discrete Shading. The Visual Computer, 6(1), 16-27
[141] Hoehne, K.H. and Bernstein, R. (1986). Shading 3D-Images from CT Using Gray-Level Gradients. IEEE Transactions on Medical Imaging, MI-5, 1, 45-47.
[142] Csébfalviy, B. and Neumannz, L. (2002).Gradient Reconstruction and Volume Filtering. Proceedings of Szamitogepes Grafika es Geometria Conferencia 2002, Bupaest University of Technology.
[143] Alexander, B., and Yutaka, O. (2003). A Comparison of Mesh Smoothing Methods. Israel-Korea Bi-National Conference on Geometric Modeling and Computer Graphics, 83-87.
[144] Belyaev, A.G. and Bogaevski, I.A. (2000) Polyhedral Surface Smoothing with Simultaneous Mesh Regularization. Geometric Modeling and 24 Processing 2000 Proceedings, 229-237.
[145] Taubin, G. (1995). A Signal Processing Approach To Fair Surface Design. Proceedings of ACM SIGGRAPH 95, 351–358
[146] Desbrun, M., Meyer, M., Schröder, P., and Barr, A.H. (1999). Implicit Fairing of Irregular Meshes Using Diffusion and Curvature Flow. Computer Graphics (SIGGRAPH 99 Proceedings), 317–324
[147] Taubin, G. (1995). Curve and Surface Smoothing Without Shrinkage. In Proccedings IEEE International Conference on Computer Vision, 852-857
[148] Kobbelt, L. (1997). Discrete Fairing. Proceedings of the 7th IMA Conference on the Mathematics of Surfaces, 101-131
[149] Kobbelt, L., Campagna, S., Vorsatz, J., and Seidel, H.P. (1998). Interactive Multiresolution Modeling on Arbitrary Meshes. In ComputerGraphics SIGGRAPH 98 Proceedings, 105–114
[150] Stander, B.T., and Hart, J.C. (1994). A Lipschitz Method for Accelerated Volume Rendering. In Proceedings of Volume Visualization Symposium '94, 107-114
[151] Zuiderveld, K.J., Köning, A.H., and Viergever, M.A. (1992). Acceleration of Ray Tracing Using 3D Distance Transforms. Vizualization in Biomedical Computing, 1080, 324-335
[152] Lacroute, P. (1995). Real-Time Volume Rendering on Shared Memory Multiprocessors Using the Shear-Warp Factorization. Proceedings of the 1995 Parallel Rendering Symposium, 15-22
[153] He, T., and Kaufman, A. (1996). Fast Stereo Volume Rendering. The Proceedings of IEEE Visualization ’96 Conference, 49-56
[154] Fang, S., Srinivasan, R., Huang, S., and Raghavan, R. (1996). Deformable Volume Rendering by 3D Texture Mapping and Octree Encoding. IEEE Visualization ’96 Conference, 73-80
[155] Law, A. and Yagel, R. (1996). Exploiting Spatial Ray and Frame Coherency for Efficient Parallel Volume Rendering. Proceedings of GraphiCon’96, 2, 93-101
[156] Lee, C.H. and Shin, Y.G. (1997). A Terrain Rendering Method Using Vertical Ray Coherence. The Journal of Visualization and Computer Animation. 8, 97-114
[157] Fung, P. and Heng, P. (1998). Efficient Volume Rendering by IsoRegion Leaping Acceleration. Proceedings of The Sixth International Conference in Central Europe on Computer Graphics and Visualization '98, 3, 495-501
[158] Jo, S. and Jeong, C. (2000). A Parallel Volume Visualization Using Extended Space Leaping Method. Proceedings of 5th International Workshop PARA 2000, 296-305
[159] Csebfalvi, B., König, A., and Gröller, E. (2000). Fast Surface Rendering of Volumetric Data. Winter School of Computer Graphics 2000, Plzen.
[160] Shen, H., Chiang, L., and Ma, K. (2000). A Fast Volume Rendering Algorithm for Time-Varying Fields Using a Time-Space Partitioning (TSP) Tree. Volume Visualization and Graphics Symposium 2000, 119-128
Çelebi e-öğrenme portalı içersinde aramak istediğiniz anahtar kelimeleri veya ifadeleri yazın.
Henüz bir kullanıcı hesabınız yok mu? Kayıt olun